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Summary

An investigation was conducted in the model
preparation area of the Langley 16-Foot
Transonic Tunnel to determine the effects of
convoluted divergent-flap contouring on the
internal performance of a fixed-geometry exhaust
nozzle. Testing was conducted at static
conditions using a sub-scale, nonaxisymmetric,
convergent-divergent nozzle model designed with
interchangeable divergent flap inserts. Force,
moment, and pressure measurements were taken
and internal focusing schlieren flow visualization
was obtained for one baseline and four convoluted
configurations. All tests were conducted with no
external flow at nozzle pressure ratios from 1.25
to approximately 9.50.

Results indicate that baseline nozzle
performance was dominated by unstable,
shock-induced, boundary-layer separation at
overexpanded (below the design nozzle pressure
ratio) conditions, which came about through the
natural tendency of overexpanded exhaust flow to
satisfy conservation requirements by detaching
from the nozzle divergent flaps. Convoluted
configurations were found to significantly
reduce, and in some cases totally alleviate,
shock-induced, boundary-layer separation at
overexpanded conditions. This result was
attributed to the ability of convoluted contouring
to energize and improve the condition of the
nozzle boundary layer. Separation alleviation
resulted in off-design nozzle thrust ratio penalties
that ranged from 3.6% to 6.4% below the fully
separated baseline configuration; thus, imposing a
tradeoff between separation alleviation and nozzle
thrust ratio which may be acceptable in some
applications.  Separation alleviation offers
potential for installed nozzle aeropropulsive
(thrust-minus-drag) performance benefits by
reducing drag at forward flight speeds, even
though this may reduce nozzle thrust ratio at
off-design conditions. At on-design conditions,
nozzle thrust ratio for the convoluted
configurations ranged from 1% to 2.9% below the
baseline configuration; this was a result of
increased skin friction and oblique shock losses
inside the nozzle.

Introduction

Supersonic cruise transport aircraft and
modern military aircraft with supersonic cruise or
dash capabilities utilize variable-geometry
exhaust nozzles to ensure efficient aeropropulsive
(thrust-minus-drag) performance across a wide
speed range. A variable-geometry nozzle
functions by adjusting throat area and expansion
ratio to provide the optimum nozzle configuration
for each engine throttle setting and flight
condition. Independent throat area (A4,) control is
necessary to satisfy engine afterburning
requirements, and separate control of the exit area
(A,) provides the proper nozzle expansion ratio
(AJ/A,) at each flight condition (ref. 1). For
example, a typical fighter aircraft might have a
low nozzle pressure ratio of about 3.0 at takeoff,
requiring a nozzle expansion ratio of about 1.1 for
optimum nozzle performance. During a
supersonic dash to Mach 2.0, nozzle pressure ratio
increases to approximately 10.0, and a nozzle
expansion ratio of 1.9 is required for optimum
nozzle performance. Figure 1 illustrates a typical
variable-geometry nozzle at several operating
conditions.

Nozzle geometry variation is achieved using
actuators and movable nozzle flaps as shown in
figure 2. While effective, these systems can be
heavy, mechanically complex, and prone to
fatigue through thermal, aerodynamic, and
aeroacoustic loading. In addition, variable-
geometry mechanisms are inherently difficult to
integrate into fighter aircraft afterbodies and can
be a primary cause of afterbody drag. Additional
requirements such as multiaxis thrust vectoring
(ref. 2), thrust reversing (ref. 3), low observability
(ref. 4), and noise suppression (ref. 5) further
complicate the propulsion-airframe integration of
variable-geometry nozzle systems.

The capabilities of future high performance
military aircraft will be critically dependent on the
development of simple, lightweight exhaust
systems that are aerodynamically efficient,
compact, and low observable. Supersonic
transport aircraft will rely heavily on efficient
nozzle performance for extended cruise at high



supersonic speeds where the ratio of lift to drag is
low and fuel consumption is high. There is
tremendous incentive to improve both military
and transport aircraft performance by reducing the
complexity of exhaust nozzles.

The desire for reduced weight and complexity
in exhaust systems has led designers to consider
reducing, or even eliminating, the need for
variable-geometry mechanisms in exhaust
nozzles. The fundamental problem with this
solution is that a fixed-geometry nozzle will only
operate efficiently at the flight condition for
which it is designed. When operated away from
the design point (which may be common if a
supersonic aircraft is expected to cruise
subsonically, loiter, or divert to alternate airports),
a fixed-geometry nozzle suffers large off-design
performance penalties. For example, if the fighter
aircraft mentioned previously were to operate
with a fixed-geometry, 1.9 expansion ratio nozzle
at the takeotf condition, a 20-percent loss in thrust
ratio would result from nozzle overexpansion
effects (ref. 1). Large performance penalties such
as this would be unacceptable in most
applications.

The successful utilization of fixed-geometry
nozzles in most aircraft applications will require
improvements in off-design performance. At
highly overexpanded conditions, exhaust flow
separation results from the natural tendency of
overexpanded exhaust flow to satisfy
conservation requirements by separating from the
nozzle divergent flaps. This increases off-design
performance by allowing the nozzle to effectively
“adjust” to a shorter nozzle with a lower
expansion ratio. At forward flight speeds,
however, external flow can aspirate the separated
portion of the divergent flaps, causing increased
drag (ref. 6). In some instances, separation
alleviation may be necessary to ensure efficient
aeropropulsive performance, even if losses in
thrust ratio result from increased exhaust flow
overexpansion. A detailed study would be
required to determine the conditions at which
separation alleviation is beneficial to nozzle
aeropropulsive performance.

Numerous research programs have shown that
three-dimensional convoluted contouring can
enhance multistream mixing and reduce subsonic
boundary-layer separation in various applications
(refs. 7 through 10). The objective of the research
described in this report was to determine the
effects of convoluted divergent-flap contouring on
the internal performance of a fixed-geometry
exhaust nozzle. Testing was conducted at static
conditions in the model preparation area of the
Langley 16-Foot Transonic Tunnel using a sub-
scale, nonaxisymmetric, convergent-divergent
nozzle model designed with interchangeable
divergent flap inserts. The nozzle model had an
expansion ratio of 1.797 and a design nozzle
pressure ratio of 8.78. Force, moment, and
pressure measurements were taken and internal
focusing schlieren flow visualization was
obtained for one baseline and four convoluted
configurations. All tests were conducted with no
external flow and high-pressure air was used to
simulate jet-exhaust flow at nozzle pressure ratios
ranging from 1.25 to approximately 9.50.

Symbols

All forces and moments are referred to the
model centerline (body axis). The model
(balance) moment reference center was located at
station 29.39. A discussion of the data reduction
procedure, definitions of force and moment terms
and propulsion relationships used herein can be
found in reference 11. All pressures presented are
absolute unless otherwise noted.

A, nozzle exit area, 7.758 in?

A, nozzle throat area, 4.317 in?

F measured thrust along body axis,
positive in forward direction, 1bf

F, ideal isentropic thrust, Ibf

FIF; nozzle thrust ratio

(F/F e peak nozzle thrust ratio



Pa

DPij

A(FIF),
(04

B

acceleration due to gravity, 32.174
ft/sec?

Mach number
nozzle pressure ratio, ptd,/pa

design nozzle pressure ratio (NPR for
fully expanded flow at the nozzle exit)

local static pressure, psi
ambient pressure, psi
average jet-total pressure, psi

gas constant (for y=1.3997), 1716
ft?/sec?-°R

average jet-total temperature, °R
measured weight-flow rate, Ibf/sec

linear dimension measured along model
centerline from nozzle connect station
(Sta. 41.13), positive downstream (see
figs. 8,9, and 13), in.

distance between nozzle connect station
(Sta. 41.13) and nozzle throat, measured
along model centerline, positive
downstream (see fig. 13), 2.275 in.

vertical distance measured from model
centerline, positive upwards (see figs. 8
and 9), in.

lateral distance measured from model
centerline, positive to right when
looking upstream (see figs. 8 and 13),
in.

skin friction thrust ratio penalty
nozzle divergence half angle, 11.01 deg
oblique shock-wave inclination angle,

measured from upstream flow direction,
deg

Y ratio of specific heats, 1.3997 for air

0 angle of flow direction across an
oblique shock wave, measured from
upstream flow direction, deg

Subscripts:

1 conditions just upstream of a shock
wave

2 conditions just downstream of a shock
wave

Abbreviations:

C-D convergent-divergent

Hz Hertz

NPAC  Nozzle Performance Analysis Code

R radius, in.

Sta. model station, in.

Apparatus and Procedures
Test Facility

This investigation was conducted in the model
preparation area of the Langley 16-Foot
Transonic Tunnel. Although this facility is
normally used for setup and calibration of wind-
tunnel models, it can also be used for nozzle
internal performance testing at static (no external
flow) conditions. Testing is conducted in a 10 x
29-foot chamber where a cold-flow (T, =540°R)
jet from a single-engine propulsion simulation
system exhausts to the atmosphere through an
acoustically treated exhaust passage. A control
room is adjacent to the test chamber, and offers
access through a sound-proof door and
observation window. The model preparation area
shares a high-pressure air system with the 16-Foot
Transonic Tunnel that includes valving, filters,
and a heat exchanger to provide a continuous flow
of clean, dry air to the propulsion simulation



system for jet-exhaust simulation. A complete
description of the test facility is provided in
reference 12.

Single-Engine Propulsion Simulation
System

The single-engine propulsion simulation
system used in this investigation is shown in
detail in figure 3. High-pressure air supplied to
the propulsion simulation system was varied from
atmosphere up to about 140 psi total pressure in
the instrumentation section at a constant
stagnation temperature of approximately 540°R.
As shown in figure 3(b), the high-pressure air was
delivered by six air lines through a support strut
into a annular high-pressure plenum. The air was
then discharged radially into a low-pressure
plenum through eight equally spaced, multiholed
sonic nozzles. This flow transfer system was
designed to minimize any forces imposed by the
transfer of axial momentum as the air passed from
the non-metric high-pressure plenum to the metric
(attached to the balance) low-pressure plenum.
Two flexible metal bellows functioned as seals
between the non-metric and metric portions of the
model and compensated for axial forces caused by
pressurization. The air then passed through a
circular-to-rectangular transition section, a
rectangular choke plate (primarily used for flow
straightening), a rectangular instrumentation
section, and then through the nozzle, which
exhausted to atmospheric back pressure. The
instrumentation section had a ratio of flow path
width to height of 1.437 and was identical in
geometry to the nozzle airflow entrance (nozzle
connect station). All nozzle configurations tested
were attached to the downstream end of
instrumentation section at model station 41.13.

Nozzle Concept

A fixed-geometry, nonaxisymmetric, C-D
nozzle was designed with symmetric pairs (upper
and lower) of convergent and divergent flaps and
flat (internally) sidewalls to contain the exhaust
flow in the lateral direction. The nozzle was
based on a previous design described in reference
13.  In an effort to improve off-design

performance, the nozzle divergent flap surfaces
were modified with three-dimensional convoluted
contouring.

Convoluted contouring. Numerous research
programs have shown that three-dimensional
convoluted contouring can enhance multistream
mixing and reduce subsonic boundary-layer
separation in various applications (refs. 7 through
10). The most familiar application of convoluted
contouring is the turbofan forced mixer shown in
figure 4, which efficiently mixes engine-core and
fan exhaust flow in mixed-flow, long-duct,
turbofan nacelles by generating streamwise
vorticity as shown in figure 5 (ref. 14). In
addition, convoluted contouring has proven
successful in alleviating boundary-layer
separation on fighter aircraft afterbodies (ref. 9)
and airfoil trailing edges (ref. 7). Part of this
separation alleviation is due to energization of the
boundary layer from vorticity generated by the
convoluted contours, but research has shown that
the contouring can also delay separation in the
convoluted section itself (refs. 7 to 10).

The "bump" type convoluted contouring used
in this investigation is depicted in figure 6. This
contouring generates multi-dimensional pressure
gradients and inviscid secondary flows in a
normally two-dimensional onset flow, providing
three-dimensional relief for the onset boundary
layer as it approaches an adverse pressure
gradient. As boundary-layer flow nears the
convolutions, it receives additional freedom of
movement in the lateral direction, which reduces
the tendency for two-dimensional separation to
occur. In addition, the convolutions generate
secondary flows in the form of horseshoe vortices
due to the inviscid turning and stretching of
vortex filaments as they pass over the contours.
These vortical secondary flows can trail
downstream 5 to 10 convolution heights before
breaking down, continuously energizing the
boundary layer in that region (ref. 9).

Nozzle Models

The model used in this investigation was a
sub-scale, nonaxisymmetric, C-D nozzle with an



expansion ratio A/A, of 1.797 (NPR,=8.78), a
nominal throat area A, of 4.317 in’, and a constant
flow path width of 3.990 in. The model was
composed of upper and lower nozzle flap
assemblies, (each equipped with interchangeable
divergent flap inserts) and two sidewall
assemblies (each equipped with optical quality
boro-silicate crown glass windows to permit
internal focusing schlieren flow visualization). A
photograph, sketch, and geometric details of the
nozzle model with baseline (no convolutions)
divergent flap inserts installed are presented in
figures 7, 8, and 9, respectively. The four
convoluted geometries investigated consisted of a
fine configuration (fig. 10(a)), a medium
configuration (fig. 10(b)), a medium-long
configuration (fig. 10(c)), and a coarse
configuration (fig. 10(d)). Photographs of the
convoluted flap insert pairs and a typical
convoluted nozzle configuration are presented in
figures 11 and 12, respectively.

Design of the convoluted configurations was
based on guidance from prior research (refs. 7 to
10). Convolution length-to-height scaling was
varied by testing aggressive contours, in which
the convolution rose to its maximum amplitude in
a short distance (0.5 in. for the fine, medium, and
coarse convoluted configurations), and a more
gentle contour, in which the convolution rose to
its maximum amplitude over a longer distance
(0.875 in. for the medium-long convoluted
configuration). The fine, medium, and coarse
convoluted configurations had approximately the
same wetted area, while their geometry varied in
maximum amplitude. Engineering judgment was
used to pick a maximum amplitude of 0.0998
inches for the medium convoluted configuration;
the fine and coarse convoluted configurations had
maximum amplitudes that were one half and
twice that of the medium convoluted
configuration, respectively. All convoluted
contours had parallel lobe walls, a lobe height to
width aspect ratio of 2.0, and semi-circular lobe
hills and valleys. Longitudinal and streamwise
convolution profiles were composed of
symmetric, tangent arcs such that the
convolutions rose from zero height to their
maximum amplitude in a smooth, continuous

fashion. The length of the convoluted run was
1.00 inch for the fine, medium, and coarse
convoluted configurations and 1.75 inches for the
medium-long convoluted configuration.

Instrumentation

Weight-flow rate of high-pressure air supplied
to the nozzle was calculated from pressures and
temperatures measured in a calibrated multiple-
critical venturi system located upstream of the
propulsion simulation system. This venturi
system is the same airflow-measurement system
used in the 16-Foot Transonic Tunnel, and is rated
to be 99.9% accurate in weight-flow
measurements. Forces and moments were
measured by a six-component strain-gauge
balance located on the centerline of the propulsion
simulation system. Jet total pressure was
measured at a fixed station in the instrumentation
section with a four-probe rake through the upper
surface and a three-probe rake through the corner
as shown in figure 3(b). Two iron-constantan
thermocouples in the instrumentation section
measured jet total temperature.

Static pressures were measured inside the
nozzle for each configuration using 0.020-inch
diameter static pressure orifices as shown in
figure 13. There were six static pressure orifices
in the nozzle convergent section and one orifice at
the geometric throat (fig. 13(a)), located on the
nozzle centerline (z=0.000 in.). The flap inserts
were equipped with a row of centerline and
sideline (0.400 inches from the sidewall) pressure
orifices, each containing 21 static pressure
orifices spaced 0.100 inches apart. Unique to the
convoluted configurations was an row of ten static
pressure orifices in the lobe valley (z=0.1995 in.),
adjacent to the centerline lobe hill, that were
added to determine multi-dimensional effects of
the convolutions.

Individual pressure transducers were used to
measure pressures in the air supply system,
multiple-critical venturi, instrumentation section,
and nozzle convergent section. The transducers
were selected and sized to allow the highest
accuracy over each required measurement range.



Divergent flap pressures were measured by two
electronically scanning pressure modules located
in the model preparation area test chamber in an
acoustically shielded cabinet.

Data Reduction

Each data point is the average steady-state
value computed from 50 frames of data taken at a
rate of 10 frames per second. All data were taken
with ascending NPR. A detailed description of
the procedures used for data reduction in this
investigation can be found in reference 11.

Balance corrections. Each of the six
measured balance components were initially
corrected for model weight tares and isolated
balance component interactions. Although the
bellows arrangement in the air pressurization
system was designed to minimize forces on the
balance caused by pressurization, small bellows
tares on the six-component balance still existed.
These tares resulted from small pressure
differences between the ends of the bellows when
air system internal velocities were high and from
small differences in the spring constant of the
forward and aft bellows when the bellows were
pressurized. Bellows tares were determined by
testing Stratford choke calibration nozzles with
known performance over a range of expected
internal pressure and external forces and
moments. The resulting tares were then applied
to the six-component balance data to obtain
corrected balance measurements. Balance axial
force obtained in this manner is a direct
measurement of the nozzle thrust along the body
axis, . The procedure used for computing
bellows tares is discussed in detail in reference
15.

Calculations. Jet total pressure was measured
from four center rake and three corner rake total
pressure probes located in the instrumentation
section. Nozzle pressure ratio (NPR) is the
average jet total pressure p,; measured in the
instrumentation section divided by ambient
pressure p,; NPR was varied in this investigation
from 1.25 to approximately 9.50. Jet total
temperature T,; was obtained from two total

temperature probes located in the instrumentation
section. The average jet total pressure and jet
total temperature are computed as the arithmetic
mean of the individual measurements.

Nozzle thrust ratio F/F, is the ratio of
measured thrust along the body axis F to the
computed ideal isentropic thrust F. The measured
weight-flow rate w,, which is determined by using
a multiple-critical venturi system, is used to
determine ideal isentropic thrust from the
following equation:

o RjTt,j ZY | 1 (r-D/v
Fimwn =g 321 R
Y

Uncertainty Analysis

An uncertainty analysis of the results
presented was performed based on a propagation
of bias uncertainties of actual measurements
through the data reduction equations. This
analysis assumes that bias errors are dominant
over precision errors and is based on the method
presented in reference 16. This method uses the
first order terms in a Taylor series expansion of
the data reduction equations to estimate the
uncertainty contributions of each measurement.
With this technique, the contribution of each
measurement would be the measurement
uncertainty multiplied by the derivative of
the data reduction equation with respect to
that measurement. The total uncertainty of the
final calculated result is estimated as the
root-sum-square of the individual contributions
with 95-percent confidence.

The analysis accounted for the uncertainties of
the following measurements: jet total pressure, jet
total temperature, atmospheric pressure, venturi
weight-flow rate, and balance axial force. The
analysis also accounted for the beneficial etfect of
averaging multiple measurements of the same
quantity, such as the total pressure in the
instrumentation section. This type of analysis is
typical of that used for experimental static test
programs and is credited to the work presented in
reference 17.



The results of the analysis for the range of test
conditions indicate that the uncertainty of NPR
and p/p,; is approximately +0.28 percent of
measured value. The uncertainty of F/F; is
approximately +0.004 and is essentially
independent of NPR.

Focusing Schlieren Flow Visualization

A focusing schlieren flow visualization system
was used during this investigation to visualize the
nozzle internal (through glass sidewalls) and
external exhaust flowfield. An optical description
and schematic layout of the focusing schlieren
system are presented in figure 14. The system
was designed and built based on criterion reported
in reference 18. The system is characterized by a
133 mm diameter field of view, a sensitivity of 17
arcsec, a resolution of 0.25 mm, a depth of sharp
focus of 4.6 mm, and a depth of unsharp focus of
36 mm. The image was focused on the centerline
of the nozzle.

The light source for the focusing schlieren
system was a xenon strobe flash tube. A driving
circuit picked up sync pulses generated by the
recording video camera and triggered the flash at
a 30 Hz rate with pulses of 0.6 usec duration and
0.05 watt-sec power. A 720 x 480 pixel
resolution color video camera and a 70 mm still
camera recorded results.

The focusing schlieren system was assembled
on a 44 x 66 inch table that mounted on a rigid
platform equipped with casters and leveling
screws. The platform was placed under the
propulsion simulation system and jacked and
leveled to the appropriate position. Flow
visualization data were recorded simultaneously
with other data acquisition.

Presentation of Results

Nozzle thrust ratio F/F,; and internal static
pressure ratio p/p,; data for all nozzle
configurations tested are tabulated in table 1 and
tables 2 to 6, respectively. During the discussion
of results, comparisons of nozzle thrust ratio F/F,

are made in terms of percentage change from
ideal (F/F=1) isentropic conditions. Graphical
presentation of basic and summary data are
presented in figures 15 to 30.

Results and Discussion

On-Design Performance

Baseline configuration. Nozzle thrust ratio
F/F; performance for the baseline configuration is
presented as a function of nozzle pressure ratio
(NPR) in figure 15. Peak thrust ratio (F/F),e, for
the baseline configuration is approximately 0.986
at the on-design condition (NPR,=8.78), which is
within the 0.985 to 0.990 range consistent with
previous studies of nonaxisymmetric convergent-
divergent nozzles (refs. 19 to 21). The
approximate 1.4% loss in peak thrust ratio from
ideal isentropic conditions at NPR; can be
attributed to exit flow angularity effects and
friction drag inside the nozzle (ref. 22).

Convoluted configurations. When an exhaust
nozzle is operating at the on-design condition, it is
internally shock free, the flow is fully expanded,
and peak thrust efficiency is produced. Therefore,
the presence of convoluted contours in the
divergent section of the nozzle would likely result
in on-design performance penalties. Because
convolutions would probably be present at all
operating conditions, on-design performance
penalties associated with the convoluted geometry
must be minimized to ensure that the benefits of
having the convolutions at off-design conditions
are not outweighed by any on-design performance
penalties.

Nozzle thrust ratio performance for baseline
and convoluted configurations is presented as a
function of NPR in figure 16. All convoluted
configurations had (F/F)),., at NPR, that were
lower than the baseline value. This result is
summarized in table 7. Losses in (F/F ), due to
the convolutions were 1% or less for the fine,
medium, and medium-long convoluted
configurations. The coarse convoluted
configuration had a significantly larger 2.9% loss
in (F/F), as a result of its more aggressive



convoluted geometry.

The convoluted configurations had a
significant increase in wetted area over that of the
baseline configuration. Consequently, increased
skin friction losses were expected to impart a
thrust ratio penalty. After calculating wetted area
for each configuration, skin friction drag penalties
A(F/F;); were estimated and (F/F),., values were
predicted using the baseline nozzle pressure
gradient as input to the nozzle internal
performance prediction package NPAC described
in reference 22. The results are summarized in
table 8.

The increase in wetted area was 15% for the
fine, medium, and coarse convoluted
configurations and 26% for the medium-long
convoluted configuration. Using NPAC, a skin
friction drag penalty of 0.2% was estimated and
peak thrust ratio of 0.984 was predicted for the
coarse, medium, and fine convoluted
configurations. A slightly higher skin friction
drag penalty of 0.3% and slightly lower peak
thrust ratio of 0.983 was predicted for the
medium-long convoluted configuration. A
comparison of NPAC predicted and
experimentally measured peak thrust ratios for
baseline and convoluted configurations is
presented in figure 17. The fine and medium-long
convoluted configurations had the highest thrust
ratio performance of the convoluted
configurations, which at (F/F;),.,=0.980, was
only 0.6% lower than the baseline value. The
medium and coarse convoluted configurations had
peak thrust ratio performance that was 1.0% and
3.1% lower than the baseline value, respectively.
Note that the medium-long convoluted
configuration, with 11% more wetted area than
the other convoluted configurations, had a higher
(F/F)pesc  than the medium convoluted
configuration. This result suggests that on-design
thrust ratio penalties for convoluted
configurations are only partially attributable to
increased wetted area; e.g., they are related to
some other phenomena as well.

Flow visualization at NPR=8.9, presented for
baseline and convoluted configurations in figure

18, shows that the convoluted configurations
generated intense supersonic wave radiation that
coalesced into oblique shocks at certain points in
the nozzle. The presence of oblique shocks
reduces jet momentum in the nozzle, which
explains the additional peak thrust ratio penalties
imposed by the convolutions. The medium-long
convoluted configuration (fig. 18(d)) appears to
have generated less supersonic wave radiation
than the other convoluted configurations,
explaining the aforementioned lower losses in
(F/F )peax for this configuration.

A comparison of baseline and convoluted
internal static pressure ratio distributions (plotted
against nondimensionalized streamwise location
relative to the nozzle throat x/x,) is presented in
figure 19 at NPR=8.9. In each convoluted
configuration, pressures upstream and down-
stream of the convolution run were not greatly
affected by the convolutions. Flow over the fine
(fig. 19(a)) and medium-long (fig. 19(c))
convolution runs was characterized by weak
compressions (locally increasing p/p,;) at the
leading and trailing edges of the convolution hill
and a stronger compression midway in the
convolution valley. Similar behavior occurred for
the medium (fig. 19(b)) and coarse (fig. 19(d))
convoluted configurations except that compres-
sions were much stronger and were separated by
regions of rapid expansion (locally decreasing
p/p.;) for these configurations. This behavior may
help explain why the medium convoluted
configuration had stronger supersonic wave
radiation and a lower (F/F}),,, than the medium-
long convoluted configuration. Like the coarse
convoluted configuration, the medium convoluted
configuration presented a much more aggressive
streamwise convolution geometry than the
medium-long or fine convoluted configurations,
such that the flow had to turn more abruptly
through the convolutions and a stronger
compression/expansion mechanism was
necessary. The convolution hill for the coarse
convoluted configuration was aggressive enough
to generate a strong shock (noted by a rapid
compression) at the start of the convolution run,
which explains the severe drop in (F/F,)ye
measured for that configuration.



Off-Design Performance

Baseline configuration. As shown in figure
15, nozzle thrust ratio decreased as NPR
decreased below NPR,; a result of exhaust flow
overexpansion effects. Internal static pressure
ratio distributions for the baseline configuration,
presented in figure 20, are typical of convergent-
divergent nozzle flow characteristics (ref. 23).
For centerline pressures (z=0.00 in.), the first two
curves at a NPR of 1.26 and 1.4 indicate choked
(p/p./<0.528), internally overexpanded flow with
a weak shock (noted by the significant increase in
p/p.; with x/x,) present near the nozzle geometric
throat (x/x=1.00). Flow downstream of the shock
was subsonic (p/p,;>0.528), remained attached to
the divergent flap wall, and recovered to ambient
pressure (p/p,/=1/NPR) in a smooth, continuous
fashion. Flow visualization for the baseline
configuration is shown in figure 21. At NPR=1.4
(fig. 21(a)), there was a weak, almost normal
shock downstream of the throat with little or no
lambda foot structure evident. This behavior is
characteristic of a weak shock, with a flow Mach
number of approximately 1.2 just upstream of the
shock (M,), and a thin boundary layer inside the
nozzle. Flow Mach number inside the nozzle was
estimated from p/p,; values using tables for
compressible flow in reference 24.

As shown in figure 20, the discontinuous
nature of the centerline pressure distribution at
NPR=1.6 indicates that shock strength increased
(M;=1.4), and the inflection point in the pressure
recovery downstream of the shock at x/x=1.28
indicates that flow separation occurred on the
divergent flaps, though it was not severe. The
pressure distribution also indicates that the flow
became subsonic downstream of x/x=1.55 and
flow reattachment to the flap is indicated by the
smooth pressure recovery downstream of this
point. By NPR=1.8, the upstream shock Mach
number was M;=1.5 and shock-induced,
boundary-layer separation began to dominate
nozzle flow characteristics. At NPR=1.8, there
are strong signs of a separation bubble, with
minimal pressure recovery indicated by a
relatively flat pressure distribution from the shock
location at x/x,~1.35 out to x/x=1.7; however, full

recovery to ambient pressure occurred over the
remaining length of the nozzle. Flow
visualization at NPR=1.8 in figure 21(b) shows
the shock with a small lambda foot structure. The
flow was also highly unstable; this phenomena
was observed in the schlieren video recorded
during the test and is indicated by the schlieren
photograph, which captured an image of the
shock in two positions over a 0.6 usec duration.
Because the image was focused on the centerline
of the nozzle with a depth of sharp focus of 4.6
mm, the dual-shock nature of this photo should
not be attributed to an alignment problem.

An increase in pressure ratio to NPR=2.0 did
not significantly change shock location or
strength, but did result in fully detached shock-
induced separation with almost no pressure
recovery downstream of the shock (fig. 20). Flow
visualization at NPR=2.0 in figure 21(c) shows
the shock with a pronounced lambda foot
structure and a large separation region extending
from the leading lambda foot downstream past the
nozzle exit. The results discussed above indicate
that the nozzle flow adjusted to exit conditions at
NPR=2.0 simply by detaching from the divergent
flaps, while normalized pressure (and thus Mach
number) upstream of the shock matched those of
the previous NPR. This behavior indicates that
the onset of fully detached flow separation at
NPR=2.0 was not the result of a stronger shock-
boundary layer interaction, but instead came
about through the natural tendency of
overexpanded exhaust flow in a fixed-geometry
nozzle to conserve mass, momentum, and energy
by detaching from the divergent flaps and
"adjusting” to an effectively shorter nozzle with a
lower expansion ratio.

As shown in figure 15, the onset of fully-
detached, shock-induced, boundary-layer separ-
ation at NPR=2.0 corresponds to a marked
increase in nozzle thrust ratio. By providing an
effectively lower nozzle expansion ratio, internal
flow separation reduced overexpansion losses in
the nozzle and increased nozzle thrust ratio. It
should be noted that this beneficial effect may not
exist at forward speeds where external flow could
aspirate the separated portion of the divergent



flaps, causing increased drag. As a result, the
ability to alleviate separation inside a fixed-
geometry nozzle may be beneficial to overall
aeropropulsive performance at forward speeds,
even if small losses in nozzle thrust ratio occur as
a result of the separation alleviation process. The
information required to make the tradeoff
between allowing separation to occur or
alleviating separation is beyond the scope of this
investigation.

As shown in figure 20, fully-detached flow
separation occurred for all subsequent internally
overexpanded NPRs above 2.0. As NPR was
increased beyond 2.0, the leading lambda foot
progressed downstream in the nozzle. Figure
21(d) shows the shock at NPR=2.4 with a well
defined lambda foot structure and fully detached
flow separation. By NPR=3.4 (fig. 21(e)), the
lambda foot structure had grown significantly,
such that the main shock and trailing lambda foot
were outside the nozzle. At this NPR, flow inside
the nozzle past the separation point showed strong
resemblance to externally overexpanded exhaust
flow; the jet plume necked down from the
separation point at the leading lambda foot to the
trailing lambda foot, and there was an expansion
fan emanating from each trailing lambda foot.
This behavior indicates that the separation point
was behaving as if it were at the nozzle exit, and
flow past this point was externally overexpanded.
Static pressure ratio distributions in figure 20
indicate that the shock was positioned near the
nozzle exit by NPR=5.0 and that the nozzle was
shock free by NPR=5.4. At NPR>5.4, all
pressure distributions fell on the same curve,
indicating that nozzle internal flow characteristics
were independent of NPR beyond that point.

A comparison of sideline (z=1.595 in.) to
centerline (z=0.000 in.) internal static pressure
ratio distributions in figure 20 indicates noticeable
differences below NPR=2.4, Differences between
sideline and centerline pressure distributions in
both shock location and pressure recovery past the
shock indicate that flow inside the nozzle was
three-dimensional and that the shock was non-
planar. Sideline data at NPR of 1.26 and 1.4
show fully-detached flow separation and a shock
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location upstream of its centerline position.
Sideline pressures near the nozzle exit are lower
than centerline pressures, indicating that sideline
flow was recompressing downstream of the
nozzle exit.

Convoluted configurations. Individual
comparisons of nozzle thrust ratio between
baseline and convoluted configurations are
presented in figure 22. At very low NPRs, the
convoluted configurations exhibited performance
characteristics that were similar to the baseline
configuration. Static pressure ratio distributions
presented for each convoluted configuration in
figure 23 show overexpanded and separated flow
at NPRs up to 2.0 in the fine convoluted
configuration (fig. 23(a)), 1.8 in the medium
convoluted configuration (fig. 23(b)), and 1.6 in
the medium-long (fig. 23(c)) and coarse
convoluted configurations (fig. 23(d)). Flow
visualization at these NPRs, presented in figure
24, show various degrees of separation for each
configuration. For all NPRs equal to or lower
than the above noted values, figure 23 shows the
shock positioned upstream of the convolution run
and similar hill and valley pressure distributions,
indicating that a multi-dimensional pressure
gradient was not generated across the convolution
run at these low NPR values.

When nozzle pressure ratio was increased
above these low NPR values, figure 22 shows that
there was a dramatic drop in F/F; for each of the
convoluted configurations. The drop in F/F,
occurred for the fine convoluted configuration
(fig. 22(a)) at a NPR between 2.0 and 2.2, when
the shock jumped from its position upstream of
the convolution run at x/x=1.2 to a position
midway through the convolution run at x/x=1.6
(fig. 23(a)). Flow visualization for the fine
convoluted configuration in figure 25 shows a
nearly normal shock at NPR=2.2 (fig. 25(a)) with
a lambda foot structure significantly smaller than
that of the baseline configuration (fig. 21(c)) at a
similar NPR and shock location. With this "shock
jump"”, flow over the convolution run was
supersonic, a multi-dimensional pressure gradient
was generated across the convolution run, and
flow separation was almost completely alleviated.



As a result, nozzle internal flow could no longer
adjust to exit conditions by detaching from the
divergent flaps; thus, exhaust flow overexpansion
losses increased (F/F; decreased).

Above the "shock jump" NPR, F/F; for the
fine convoluted configuration increased
continuously as overexpansion losses decreased
(fig. 22(a)). Static pressure ratio distributions for
the fine convoluted configuration in figure 23(a)
indicate that the shock moved smoothly
downstream with each subsequent increase in
NPR. At each shock position, the pressure rise
through the shock was gradual, the flow generally
remained attached (local areas of separated flow
are evident), and there was good pressure
recovery downstream of the shock. A comparison
of flow visualization for the fine convoluted
configuration at NPRs of 2.2 and 2.6 in figure 25
shows a larger lambda foot structure and a more
turbulent attached region downstream of the
shock at the higher NPR value. As indicated in
figure 23(a), the fine convoluted configuration
was free of internal shocks at NPR>5.0. Losses
in F/F; due to the fine convolutions were as large
as 6% at NPR=2.2, but decreased to less than 1%
at NPR>5.0 (see figure 22(a)).

The "shock jump" for the medium convoluted
configuration occurred between NPRs of 1.8 and
2.0. The centerline static pressure distribution for
the medium convoluted configuration (fig. 23(b))
at NPR=2.0 shows a gradual pressure rise through
the shock and good downstream pressure
recovery. Flow visualization for the medium
convoluted configuration at NPR=2.0 (fig. 26(a))
shows turbulent, attached flow downstream of the
shock, indicating that this configuration also
provided good separation alleviation. However,
F/F; for the medium convoluted configuration
(fig. 22(b)) was not continuous above the "shock
jump" NPR (note discontinuity in F/F; at
2.5<NPR<3.0). Static pressure ratio distributions
for the medium convoluted configuration (fig.
23(b)) show that the main shock merged with the
strong convolution valley oblique shock at a NPR
between 2.0 and 2.6. A comparison of flow
visualization for the medium convoluted
configuration at NPRs of 2.0 and 2.6 in figure 26
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indicates that the leading lambda foot remained in
the same location while the main shock moved
downstream and the lambda foot grew with
increasing NPR. As this occurred, flow remained
attached through the shock, and downstream
pressure recovery was good.

As NPR was increased to 3.0, the shock once
again jumped downstream, this time from x/x~1.6
to a position near the nozzle exit at x/x=1.9. As
for the previous shock jump, there is a
corresponding shift in nozzle thrust ratio (fig.
22(b)), though in this case the shift is more likely
due to a loss effect than additional separation
alleviation. As shown in figure 26(c), when the
shock jumped downstream at NPR=3.0, it
"uncovered" the valley oblique shock at the
trailing edge of the convolution run such that loss
effects of that shock could affect nozzle thrust
ratio. Beyond NPR=3.0, the shock moved
smoothly out of the nozzle, and the nozzle was
shock free at NPR>4.6 (fig. 23(b)). The losses in
F/F; due to the medium convolutions were as
large as 6.5% at NPR=2.0, but decreased to
approximately 1% at NPR>4.6 (fig. 22(b)).

The "shock jump" for the medium-long
convoluted configuration occurred between a
NPR of 1.6 and 1.8 as indicated by the static
pressure ratio distributions in figure 23(c). The
centerline static pressure distribution at NPR=1.8
also indicates a double shock (one at x/x~1.45
and one at x/x,~1.6) with a small separation
bubble in between. Flow visualization for the
medium-long convoluted configuration at
NPR=1.8 (fig. 27(a)) shows the double shock
with attached flow downstream of the second
shock. Unlike the medium convoluted
configuration, F/F; for the medium-long
convoluted configuration at NPR>2.0 was
continuous (fig. 22(c)), and pressure distributions
(fig. 23(c)) indicate that the shock moved
smoothly downstream with each subsequent
increase in NPR. At each shock position, the
pressure rise through the shock was gradual, the
internal flow remained attached, and there was
strong pressure recovery downstream of the
shock. Flow visualization for the medium-long
convoluted configuration at NPR=2.6 (fig. 27(b))



shows a larger lambda foot structure and a more
turbulent attached region downstream of the main
shock than at the lower NPR. Static pressure ratio
distributions (fig. 23(c)) indicate that the medium-
long configuration was shock free at NPR>4.2.

As shown in figure 23(d), the "shock jump"
for the coarse convoluted configuration occurred
between a NPR of 1.6 and 1.8. For this
configuration, the shock moved downstream after
the initial "shock jump", but then merged with the
valley oblique shock and remained in that position
at x/x~1.6 for NPRs between 2.2 and 3.8. A
second jump in the shock position (x/x~=1.6 to
x/x~1.75) for the coarse convoluted configuration
is evident in figure 23(d) at NPR=4.2, when the
shock separated from the convolution valley
oblique shock. This is observed in flow
visualization photographs for the coarse
convoluted configuration at NPRs of 3.8 and 4.2
in figure 28, which shows the shock structure
further downstream at the higher NPR value. As
was the case with the medium convoluted
configuration, this jump coincided with a decrease
in nozzle thrust ratio (note the change in slope of
F/F, at NPR=4.0 in fig. 22(d)) when the valley
oblique shock was uncovered and the loss effects
of that shock were added. At NPR>4.2, the shock
moved smoothly out of the nozzle, and the nozzle
was shock free for NPR>5.4 as indicated by the
pressure distributions of figure 23(d). The losses
in F/F; due to the coarse convolutions (fig. 22(d))
were as large as 8% at NPR=2.4, but decreased to
approximately 2.6% near NPR,.

The medium-long convoluted configuration
provided the best combination of separation
alleviation and continuous downstream shock
movement (no shock jumps past the initial jump).
Separation alleviation began at NPR=1.8 for this
configuration, and the nozzle was shock free for
NPR>4.2, which was a lower NPR than for any of
the other convoluted configurations. The losses
in F/F; due to the medium-long convoluted
geometry (fig. 22(c)) were as large as 7% at
NPR=2.4, but decreased to less than 1% at
NPR>5.0. At on-design conditions, the medium-
long convoluted configuration suffered only a
0.6% loss in (F/F}),.,. This may be an acceptable
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on-design nozzle thrust ratio penalty given the
excellent off-design flow separation alleviation
capabilities of this configuration (assuming that
external flow effects would cause additional drag
when internal nozzle flow was separated).

Shock-Boundary Layer Interaction

Baseline configuration. Flow visualization at
NPR=3.0 for the baseline configuration in figure
29 shows the shock with a large, well defined
lambda foot structure and fully-detached flow
separation beginning at the leading branch of the
lambda foot and extending downstream. Shock
angle measurements were made from figure 29,
and were used in conjunction with oblique shock
theory (ref. 24) in an effort to better describe the
shock-boundary layer interaction as shown in
figure 30.

Upstream of the leading lambda foot, flow was
assumed to be locally parallel to the nozzle
divergent flap and M, was calculated from p/p,;
values to be approximately 1.8. Flow decelerated
across the leading lambda foot which, with an
inclination angle 3 of approximately 52° from the
nozzle divergent flap, resulted in a downstream
Mach number M, of approximately 1.2. Using
oblique shock theory, the flow turning angle 6
across the leading lambda foot was calculated to
be 15°. The leading lambda foot possessed the
severity of a normal shock and was strong enough
to completely detach nozzle flow from the
divergent flaps. From the new flow direction, the
trailing branch of the lambda foot had an
inclination angle of P=63°. For M=1.2
approaching this shock, the corresponding flow
turning angle of the trailing lambda foot was
calculated to be 6=3°. This satisfied flow turning
requirements of the fully detached flow separation
region and resulted in nearly axial flow
downstream of the trailing lambda foot.

In this shock-boundary layer interaction, it is
apparent that the nozzle flap was steep enough
and the remaining length of the nozzle past the
flow separation point was short enough that
reattachment would not occur, since the given
shock structure resulted in nearly axial flow in the



nozzle. As a result, the free shear layer generated
in the flow separation process became the actual
exit shear layer of the nozzle and the flow
separation point behaved as if it were the nozzle
exit.

Convoluted configurations. Each convoluted
configuration had dramatically different shock-
boundary layer interaction characteristics than the
baseline configuration. As indicated in figure 20,
static pressure ratio distributions for the baseline
configuration at NPR>1.41 were characterized by
a single, sharp compression with subsequent
shock-induced, boundary-layer separation. This
behavior is illustrated by flow visualization in
figure 21, which shows the baseline configuration
with a large, well defined lambda foot structure,
and fully detached flow downstream of the
leading lambda foot.

Static pressure ratio distributions presented in
figure 23 for the convoluted configurations
indicate that the convoluted contouring
significantly reduced, and in some cases totally
alleviated, shock-induced boundary-layer
separation. Pressure distributions indicate that a
multi-dimensional pressure gradient was formed
across the convolution run at all but the lowest
NPRs. It is likely that the generation of
streamwise vorticity energized the nozzle
boundary layer upstream of the shock-boundary
layer interaction region. The energized boundary
layer was able to negotiate the severe adverse
pressure gradient of the shock, thereby
minimizing shock-induced boundary-layer
interaction effects and alleviating flow separation.

Each convoluted configuration had a distinct
shock-boundary layer interaction mechanism,
undoubtedly due to the different contouring in
each case. The fine convoluted configuration had
the least aggressive contouring, resulting in
shock-boundary layer interaction characteristics
closest to the baseline nozzle. (Compare figures
20 and 23(a).) However, flow visualization for
the fine convoluted configuration (fig. 25(a))
shows a noticeably smaller lambda foot structure
than the baseline configuration and static pressure
ratio distributions in figure 23(a) indicate that the
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fine convoluted contouring alleviated separation
for all NPRs past the shock jump. The medium
and medium-long convoluted configurations were
designed with common spanwise profiles, but it
appears that the slightly less aggressive
streamwise run in the medium-long convoluted
configuration provided the best off-design
separation alleviation over the widest range of
NPR with the lowest peak thrust ratio penalty.
The coarse convoluted configuration also
improved the shock-boundary layer interaction,
but this configuration experienced substantial
losses in peak thrust ratio.

Conclusions

An investigation was conducted in the model
preparation area of the Langley 16-Foot
Transonic Tunnel to determine the effects of
convoluted divergent-flap contouring on the
internal performance (nozzle thrust ratio) of a
fixed-geometry exhaust nozzle. Testing was
conducted at static conditions using a sub-scale,
nonaxisymmetric, convergent-divergent nozzle
model designed with interchangeable divergent
flap surfaces. Force, moment, and pressure
measurements were taken and internal focusing
schlieren flow visualization was obtained for one
baseline (no convolutions) and four convoluted
configurations. All tests were conducted with no
external flow and nozzle pressure ratio was varied
during jet simulation from 1.25 to approximately
9.50. The results of this investigation indicate the
following conclusions:

1. Convoluted configurations were found to
significantly reduce, and in some cases totally
alleviate, shock-induced, boundary-layer
separation at off-design conditions. This
indicates that the convoluted contouring
energized and improved the condition of the
nozzle boundary layer such that the boundary
layer was able to resist the natural separation
tendency of the exhaust flow. This did,
however, result in off-design nozzle thrust
ratio penalties that ranged from 3.6% to 6.4%
below the fully separated baseline
configuration, thus imposing a tradeoff
between separation alleviation and nozzle



thrust ratio which may be acceptable in some
applications.

2. Of the four convoluted configurations tested,
the medium-long convoluted configuration
provided the best combination of off-design
separation alleviation and continuous down-
stream shock movement. Separation
alleviation began at NPR=1.8 in this
configuration, and the nozzle was shock free
at NPR>4.2, earlier than any of the other
convoluted configurations tested. Even with
26% more internal wetted area than the
baseline configuration, the medium-long
convoluted configuration had a peak thrust
ratio of 0.980, only 0.6% below the baseline
value.

3. At on-design conditions, nozzle thrust ratio
for the convoluted configurations ranged from
1% to 2.9% below the baseline configuration.
This was a result of the convolutions
increasing skin friction and oblique shock
losses inside the nozzle.

NASA Langley Research Center
Hampton, Virginia 23681-0001
January 4, 1999
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e i

Takeoff Condition Subsonic Cruise

R\ A\
Ny N AN

Dash to Mach 2 Maximum Power at Mach 2

Figure 1. Sketch showing a typical variable geometry nozzle over several operating conditions.

Reverser actuator
—Reverser vane

—Flap hinge
~ External
o flap

Figure 2. Sketch showing a typical variable geometry nonaxisymmetric exhaust nozzle.
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Figure 6. Sketch showing "bump" type convoluted contouring used in this investigation.

-

Figure 7. Photograph of the static test model with baseline flap inserts installed.
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Section B-B

Sidewall assembly

Nozzle flap assembly

Sidewall assembly

Section A-A

Interchangeable
divergent flap inserts

sl

Glass window

%

3-Quarter View

.
> <

—

N

End View
(looking upstream)

Figure 8. Sketch of nozzle model with baseline flap inserts (shaded) installed.
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Sta. _ Coordinates
41.13 Point - -
x,in. | y,in.
1 0.000 | 0.000
2 0.000 | -0.614
3 0.000 | 1.386
4 0.917 1.163
5 1.988 | 0.611
6 2.394 | 0.553
7 2.430 | 0.559
8 2.275 1.166
9 4550 | 0.972

X _Nozzle
centerline

2 < 2.160 >|

3.990

(a) Nozzle flap assembly.

Figure 9. Sketch showing nozzle geometric details. Dimensions are in inches.
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<€0.875>

Section A-A

/.

J

(b) Sidewall assembl
Figure 9. Concluded
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L92-08773

Figure 11. Photograph of the convoluted flap insert pairs.

Figure 12. Photograph of the static test model with convoluted flap inserts installed.
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View A-A

- — —o—cro—o—o—o—?—— - - -
1 |
|
|
|
|
Thr|oat E
Sta. R .
4143 Side View
f—>
2275 |
/

Throat

ZZA

it

Static Pres Orifice Locat
X, in X/X¢t
0.750 0.330
1.000 0.440
1.250 0.550
1.500 0.659
1.750 0.769
2.025 0.890
2.275 1.000

Denotes static p rifice locat

(a) Nozzle flap assembly static pressure taps.

Figure 13. Nozzle static pressure orifice locations. Dimensions are

41
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Sta.
4113

Static Pressure Orifice Locations

z=0.000in. | z=1.595in.
X, in. X/xp | x,In. X/X¢
2528 | 1.111 | 2528 | 1.111
2626 | 1.154 | 2626 | 1.154
2724 | 1198 | 2.724 | 1.198
2823 | 1.241 | 2823 | 1.241
2921 | 1.284 | 2921 | 1284
3.019 | 1.827 | 3.019 | 1.827
3.117 | 1.370 | 8.117 | 1.370
3215 | 1.413 | 3215 | 1.413
3313 | 1.456 | 3.313 | 1.456
3412 | 1.500 | 3.412 | 1.500
3510 | 1.543 | 3510 | 1.543
3.608 | 1.586 | 3.608 | 1.586
3.706 | 1.629 | 3.706 | 1.629
3.804 | 1.672 | 3.804 | 1.672

; 3.902 | 1.715 | 3.902 | 1.715
View A-A 4.001 | 1.758 | 4.001 | 1.758
4.099 | 1.802 | 4.099 | 1.802

A

Sta. 4197 | 1845 | 4197 | 1.845
43.56 4295 | 1888 | 4295 | 1.888
} 2160 ,} 4393 | 1.931 | 4393 | 1.931

4491 | 1.974 | 4491 | 1.974
© Denotes static pressure orifice location

Section B-B

I — 73.990 DM

0000000000C000000000 i

(b) Baseline flap insert static pressure taps.

Figure 13. Continued.
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Sta.

4113 Static Pressure Orifice Locations

I_, X Zz =0.000 in. z2=0.19951in. z=1.595in.

V X, in. X/X¢ X, in. X/X¢ X, in. X/X¢
/ 2528 | 1.111 2528 | 1.111
/ 2626 | 1.154 2.626 | 1.154
/ 2724 | 1.198 2724 | 1.198
/ 2.823 | 1.241 2.823 | 1.241
/ 2.921 1.284 2.921 | 1.284

/// 3.019 | 1.327 | 3.019 | 1.327 | 3.019 | 1.327
///A\ 3.117 | 1.370 | 8117 | 1.370 | 3.117 | 1.370

3215 | 1413 | 83215 | 1.413 | 3.215 | 1.413

\\\\\\\\\ A 3.313 | 1456 | 3.313 | 1.456 | 3.313 | 1.456

//A\\\\\\\\\\\\ 3412 | 1.500 | 3.412 | 1.500 | 3.412 | 1.500

A 3510 | 1.543 | 3510 | 1.543 | 3.510 | 1.543

3.608 | 1.586 | 3.608 | 1.586 | 3.608 | 1.586

3.706 | 1.629 | 3.706 | 1.629 | 3.706 | 1.629
3.804 | 1672 | 3.804 | 1.672 | 3.804 | 1.672
3.902 | 1.715 | 3.902 | 1.715 | 3.902 | 1.715

4.001 | 1.758 4.001 | 1.758
4.099 | 1.802 4.099 | 1.802
4197 | 1.845 4197 | 1.845
4295 | 1.888 4295 | 1.888
4393 | 1.931 4.393 | 1.931
sta View A-A 4,491 | 1.974 4,491 | 1.974
43.56 © Denotes static pressure orifice location
- 2.160
Section B-B
IQ L o000 J —
y 3.990 Section C-C
1.995
1.7955 W
D(?l)(!l)l
0.400
Flow )

(c) Convoluted flap inserts (medium convoluted flap insert shown) static pressure taps.

Figure 13. Concluded.
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1.00

96 ,47474}

92

F/F. .88

wll

.80

16

1.00 NIRg
.96 A N \
/O/J N— hNe—N—X

_B/ I

Pt |

|

|

FIF, 88 I

o [ §/ Configuration I

O  Baseline |

.84 O  Fine convoluted l

< Medium convoluted I

A Medium-long convoluted I

N Coarse convoluted I

.80 :

|

|

76 l

1 2 3 4 5 6 7 8 9 10

NPR

Figure 16. Comparison of nozzle thrust ratio performance for baseline and convoluted configurations.
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Predicted

Measured

1.00

99

98

97

.96

(FIF) pealy 95

94
.93
92
91
.90
Fine Medium Medium-Long Coarse
Baseline Convoluted Convoluted Convoluted Convoluted

Figure 17. Comparison of NPAC predicted and experimentally measured peak thrust ratios for baseline and
convoluted configurations.
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Baseline
NPR = 8.9

(a) Baseline configuration.

Convolution
run

Fine convoluted
NPR = 8.9

(b) Fine convoluted configuration.

Figure 18. Focusing schlieren flow visualization at NPR=8.9 for baseline and convoluted configurations.
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Convolution
run

Medium convoluted
NPR = 8.9

(¢) Medium convoluted configuration.

Convolution run

Medium-long
convoluted
NPR =8.9

(d) Medium-long convoluted configuration.

Figure 18. Continued.
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Convolution
run

Coarse convoluted
NPR = 8.9

(e) Coarse convoluted configuration.

Figure 18. Concluded.
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|=a—Convolution run—s|

1.0
O—o—n
.8
.6
plpy;
: 4 Configuration
O  Baseline
O  Fine convoluted
2
0
0 2 4
x/x;
(a) Fine convoluted configuration.
|« Convolution run—m|
1.0 : :
O—
D\o\q I I
8 : :
| |
| |
.6 i i
1HE
4 , | |
Configuration t | |
O Baseline \ § ; |
O Medium convoluted
2 ; A
! ﬁ@&jﬁﬁ%
| |
0 | |
0 2 4 .6 8 1.0 1.2 1.4 1.6 1.8 2.0

x/x;

(b) Medium convoluted configuration.

Figure 19. Comparison of baseline and convoluted internal static pressure ratio distributions at NPR=8.9.
Open symbols deonte hill pressures; solid symbols denote valley pressures.
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| ¢—————— Convolution run ———m

1.0

|
I
|
|
. I
I
I
.6 |
I
plpy; I
4 , |
Configuration t |
O Baseline
O Medium-long convoluted

I
0 I I
0 2 4 6 8 1.0 1.2 1.4 1.6 1.8 2.0
x/x;
(¢) Medium-long convoluted configuration.
|- Convolution run—m|
1.0

4
Configuration t
O  Baseline
O Coarse convoluted

o ﬁ‘lﬁ?@@@@
0 2 4 6 8 1.0 1.2 1.4 1.6 1.8 2.0
x/x;

(d) Coarse convoluted configuration.

Figure 19. Concluded.
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z = 0.000 in.

1.0
s
8 \
WOC ABB
/ TN NNy
4 /:FI e S I
. ﬁ aSisisie
0
z = 1.595in.
1.0
.8
O~O<>OOOOD-(>OOC<}OOO<>0(}<}Q
HHOHH
6 D,[}D-D-D-D-}D-D-D-Egv%
o MXA-A-AA-A-A-A-A.A
/(660 A [Nt WNNNN
! A AN DD
N SiSios)
O LRERS
2 ,0/ //}8— - g
. b4
0
0 2 4 .6 8 1.0 1.2 14 1.6 1.8 2.0
x/x,

Figure 20. Internal static pressure ratio distributions for the baseline configuration.

53

PeobpphbOEBODcODDyP>OOO

NPR

1.26
141
1.61
1.81
2,01
221
241
2.61
3.01
341
3.82
422
4.62
5.02
542
6.23
7.03
8.04
8.95
9.54




Baseline
NPR=1.4

(a) NPR = 1.4.

Baseline
NPR =1.8

(b) NPR =1.8.

Figure 21. Focusing schlieren flow visualization for the baseline configuration.
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(¢) NPR =2.0.

Baseline
NPR = 2.4

(d) NPR = 2.4.

Figure 21. Continued.

55



Baseline
NPR = 3.4

(e) NPR = 3.4.

Figure 21. Concluded.
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(b) Medium convoluted configuration.

Figure 22. Individual comparisons of nozzle thrust ratio performance for baseline and convoluted configurations.
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(d) Coarse convoluted configuration.

Figure 22. Concluded.
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(a) Fine convoluted configuration.

Figure 23. Internal static pressure ratio distributions for convoluted configurations.
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(b) Medium convoluted configuration.

Figure 23. Continued.
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(¢) Medium-long convoluted configuration.

Figure 23. Continued.
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(d) Coarse convoluted configuration.

Figure 23. Concluded.
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Convolution
run

Fine convoluted
NPR = 2.0

(a) Fine convoluted configuration.

Convolution
run

Medium convoluted
NPR=1.8

(b) Medium convoluted configuration.

Figure 24. Focusing schlieren flow visualization for convoluted configurations showing nozzle shock
upstream of convolution run.
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NPR=1.6

(¢) Medium-long convoluted configuration.

Convolution
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(d) Coarse convoluted configuration.

Figure 24. Concluded.
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(a) NPR =2.2.

Convolution
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NPR = 2.6

(b) NPR =2.6.

Figure 25. Focusing schlieren flow visualization at NPRs of 2.2 and 2.6 for the fine convoluted configuration.
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NPR = 2.0

(a) NPR =2.0.

Convolution
run

Medium convoluted
NPR= 2.6

(b) NPR =2.6.

Figure 26. Focusing schlieren flow visualization at NPRs of 2.0, 2.6, and 3.0 for the medium convoluted
configuration.
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(c) NPR =3.0.

Figure 26. Concluded.
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Medium-long convoluted
NPR =1.8

(a) NPR=1.8.

Convolution run

Medium-long convoluted
NPR =2.6

(b) NPR =2.6.

Figure 27. Focusing schlieren flow visualization at NPRs of 1.8 and 2.6 for the medium-long convoluted
configuration.
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(a) NPR=338.

Convolution
run
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(b) NPR = 4.2.

Figure 28. Focusing schlieren flow visualization at NPRs of 3.8 and 4.2 for the coarse convoluted
configuration.
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Baseline
NPR = 3.0

Figure 29. Focusing schlieren flow visualization at NPR = 3.0 for the baseline configuration.

Figure 30. Sketch showing shock-boundary layer interaction lambda foot structure at NPR = 3.0
for the baseline configuration.
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